Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2618-2621, 2021 11.
Article in English | MEDLINE | ID: covidwho-1566243

ABSTRACT

The global pandemic of the novel coronavirus disease 2019 (COVID-19) has put tremendous pressure on the medical system. Imaging plays a complementary role in the management of patients with COVID-19. Computed tomography (CT) and chest X-ray (CXR) are the two dominant screening tools. However, difficulty in eliminating the risk of disease transmission, radiation exposure and not being cost-effective are some of the challenges for CT and CXR imaging. This fact induces the implementation of lung ultrasound (LUS) for evaluating COVID-19 due to its practical advantages of noninvasiveness, repeatability, and sensitive bedside property. In this paper, we utilize a deep learning model to perform the classification of COVID-19 from LUS data, which could produce objective diagnostic information for clinicians. Specifically, all LUS images are processed to obtain their corresponding local phase filtered images and radial symmetry transformed images before fed into the multi-scale residual convolutional neural network (CNN). Secondly, image combination as the input of the network is used to explore rich and reliable features. Feature fusion strategy at different levels is adopted to investigate the relationship between the depth of feature aggregation and the classification accuracy. Our proposed method is evaluated on the point-of-care US (POCUS) dataset together with the Italian COVID-19 Lung US database (ICLUS-DB) and shows promising performance for COVID-19 prediction.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Neural Networks, Computer , SARS-CoV-2
2.
Int J Comput Assist Radiol Surg ; 16(2): 197-206, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1014202

ABSTRACT

PURPOSE: Recently, the outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic has seriously endangered human health and life. In fighting against COVID-19, effective diagnosis of infected patient is critical for preventing the spread of diseases. Due to limited availability of test kits, the need for auxiliary diagnostic approach has increased. Recent research has shown radiography of COVID-19 patient, such as CT and X-ray, contains salient information about the COVID-19 virus and could be used as an alternative diagnosis method. Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost, and portability gains much attention and becomes very promising. In order to reduce intra- and inter-observer variability, during radiological assessment, computer-aided diagnostic tools have been used in order to supplement medical decision making and subsequent management. Computational methods with high accuracy and robustness are required for rapid triaging of patients and aiding radiologist in the interpretation of the collected data. METHOD: In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for multi-class improved classification of COVID-19 from CXR images. CXR images are enhanced using a local phase-based image enhancement method. The enhanced images, together with the original CXR data, are used as an input to our proposed CNN architecture. Using ablation studies, we show the effectiveness of the enhanced images in improving the diagnostic accuracy. We provide quantitative evaluation on two datasets and qualitative results for visual inspection. Quantitative evaluation is performed on data consisting of 8851 normal (healthy), 6045 pneumonia, and 3323 COVID-19 CXR scans. RESULTS: In Dataset-1, our model achieves 95.57% average accuracy for a three classes classification, 99% precision, recall, and F1-scores for COVID-19 cases. For Dataset-2, we have obtained 94.44% average accuracy, and 95% precision, recall, and F1-scores for detection of COVID-19. CONCLUSIONS: Our proposed multi-feature-guided CNN achieves improved results compared to single-feature CNN proving the importance of the local phase-based CXR image enhancement. Future work will involve further evaluation of the proposed method on a larger-size COVID-19 dataset as they become available.


Subject(s)
COVID-19/diagnostic imaging , Neural Networks, Computer , Pneumonia/diagnostic imaging , Radiography, Thoracic/methods , Thorax/diagnostic imaging , Algorithms , Deep Learning , Humans , Pandemics , Tomography, X-Ray Computed/methods
3.
Int J Comput Assist Radiol Surg ; 15(5): 737-738, 2020 05.
Article in English | MEDLINE | ID: covidwho-361352
SELECTION OF CITATIONS
SEARCH DETAIL